Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 64
Filtrar
1.
Virol J ; 21(1): 81, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38589896

RESUMO

Orthobunyavirus oropouche ense virus (OROV), the causative agent of Oropouche fever, is widely dispersed in Brazil and South America, causing sporadic outbreaks. Due to the similarity of initial clinical symptoms caused by OROV with other arboviruses found in overlapping geographical areas, differential diagnosis is challenging. As for most neglected tropical diseases, there is a shortage of reagents for diagnosing and studying OROV pathogenesis. We therefore developed and characterized mouse monoclonal antibodies and, one of them recognizes the OROV nucleocapsid in indirect immunofluorescent (IFA) and immunohistochemistry (IHC) assays. Considering that it is the first monoclonal antibody produced for detecting OROV infections, we believe that it will be useful not only for diagnostic purposes but also for performing serological surveys and epidemiological surveillance on the dispersion and prevalence of OROV in Brazil and South America.


Assuntos
Infecções por Bunyaviridae , Orthobunyavirus , Animais , Camundongos , Anticorpos Monoclonais , Infecções por Bunyaviridae/diagnóstico , Brasil/epidemiologia
2.
Front Immunol ; 15: 1331731, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38384473

RESUMO

The establishment of a virus infection is the result of the pathogen's ability to replicate in a hostile environment generated by the host's immune system. Here, we found that ISG15 restricts Dengue and Zika viruses' replication through the stabilization of its binding partner USP18. ISG15 expression was necessary to control DV replication driven by both autocrine and paracrine type one interferon (IFN-I) signaling. Moreover, USP18 competes with NS5-mediated STAT2 degradation, a major mechanism for establishment of flavivirus infection. Strikingly, reconstitution of USP18 in ISG15-deficient cells was sufficient to restore the STAT2's stability and restrict virus growth, suggesting that the IFNAR-mediated ISG15 activity is also antiviral. Our results add a novel layer of complexity in the virus/host interaction interface and suggest that NS5 has a narrow window of opportunity to degrade STAT2, therefore suppressing host's IFN-I mediated response and promoting virus replication.


Assuntos
Dengue , Interferon Tipo I , Infecção por Zika virus , Zika virus , Humanos , Interferon Tipo I/metabolismo , Infecção por Zika virus/genética , Replicação Viral , Dengue/genética , Ubiquitinas/metabolismo , Citocinas/metabolismo , Ubiquitina Tiolesterase/metabolismo , Fator de Transcrição STAT2/genética , Fator de Transcrição STAT2/metabolismo
3.
Pathogens ; 12(11)2023 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-38003826

RESUMO

The pathogenesis of Dengue virus (DENV) infection is complex and involves viral replication that may trigger an inflammatory response leading to severe disease. Here, we investigated the correlation between viremia and cytokine levels in the serum of DENV-infected patients. Between 2013 and 2014, 138 patients with a diagnosis of acute-phase DENV infection and 22 patients with a non-dengue acute febrile illness (AFI) were enrolled. Through a focus-forming assay (FFU), we determined the viremia levels in DENV-infected patients and observed a peak in the first two days after the onset of symptoms. A higher level of viremia was observed in primary versus secondary DENV-infected patients. Furthermore, no correlation was observed between viremia and inflammatory cytokine levels in DENV-infected patients. Receiver operating characteristic (ROC) curve analysis revealed that IL-2 has the potential to act as a marker to distinguish dengue from other febrile illnesses and is positively correlated with Th1 cytokines. IFN-α and IFN-γ appear to be potential markers of primary versus secondary infection in DENV-infected patients, respectively. The results also indicate that viremia levels are not the main driving force behind inflammation in dengue and that cytokines could be used as infection biomarkers and for differentiation between primary versus secondary infection.

4.
Sci Adv ; 9(15): eadg6265, 2023 04 14.
Artigo em Inglês | MEDLINE | ID: mdl-37043562

RESUMO

Hepatitis B virus (HBV) chronically infects an estimated 300 million people, and standard treatments are rarely curative. Infection increases the risk of liver cirrhosis and hepatocellular carcinoma, and consequently, nearly 1 million people die each year from chronic hepatitis B. Tools and approaches that bring insights into HBV biology and facilitate the discovery and evaluation of antiviral drugs are in demand. Here, we describe a method to initiate the replication of HBV, a DNA virus, using synthetic RNA. This approach eliminates contaminating background signals from input virus or plasmid DNA that plagues existing systems and can be used to study multiple stages of HBV replication. We further demonstrate that this method can be uniquely applied to identify sequence variants that confer resistance to antiviral drugs.


Assuntos
Hepatite B Crônica , Neoplasias Hepáticas , Humanos , Vírus da Hepatite B/genética , Antivirais/farmacologia , Antivirais/uso terapêutico , RNA , Hepatite B Crônica/tratamento farmacológico , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/tratamento farmacológico , Replicação Viral
5.
Cells ; 12(4)2023 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-36831223

RESUMO

Chikungunya virus is an arthropod-borne infectious agent that causes Chikungunya fever disease. About 90% of the infected patients experience intense polyarthralgia, affecting mainly the extremities but also the large joints such as the knees. Chronic disease symptoms persist for months, even after clearance of the virus from the blood. Envelope proteins stimulate the immune response against the Chikungunya virus, becoming an important therapeutic target. We inactivated the Chikungunya virus (iCHIKV) and produced recombinant E2 (rE2) protein and three different types of anti-rE2 monoclonal antibodies. Using these tools, we observed that iCHIKV and rE2 protein induced mechanical hyperalgesia (electronic aesthesiometer test) and thermal hyperalgesia (Hargreaves test) in mice. These behavioral results were accompanied by the activation of dorsal root ganglia (DRG) neurons in mice, as observed by calcium influx. Treatment with three different types of anti-rE2 monoclonal antibodies and absence or blockade (AMG-9810 treatment) of transient receptor potential vanilloid 1 (TRPV1) channel diminished mechanical and thermal hyperalgesia in mice. iCHIKV and rE2 activated TRPV1+ mouse DRG neurons in vitro, demonstrating their ability to activate nociceptor sensory neurons directly. Therefore, our mouse data demonstrate that targeting E2 CHIKV protein with monoclonal antibodies and inhibiting TRPV1 channels are reasonable strategies to control CHIKV pain.


Assuntos
Anticorpos Monoclonais , Febre de Chikungunya , Vírus Chikungunya , Hiperalgesia , Proteínas do Envelope Viral , Animais , Camundongos , Anticorpos Monoclonais/farmacologia , Anticorpos Antivirais , Antineoplásicos , Hiperalgesia/tratamento farmacológico , Canais de Cátion TRPV , Proteínas do Envelope Viral/metabolismo , Febre de Chikungunya/tratamento farmacológico
6.
Viruses ; 14(8)2022 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-36016409

RESUMO

Mayaro virus is an emerging arbovirus that causes nonspecific febrile illness or arthralgia syndromes similar to the Chikungunya virus, a virus closely related from the Togaviridae family. MAYV outbreaks occur more frequently in the northern and central-western states of Brazil; however, in recent years, virus circulation has been spreading to other regions. Due to the undifferentiated initial clinical symptoms between MAYV and other endemic pathogenic arboviruses with geographic overlapping, identification of patients infected by MAYV might be underreported. Additionally, the lack of specific prophylactic approaches or antiviral drugs limits the pharmacological management of patients to treat symptoms like pain and inflammation, as is the case with most pathogenic alphaviruses. In this context, this review aims to present the state-of-the-art regarding the screening and development of compounds/molecules which may present anti-MAYV activity and infection inhibition.


Assuntos
Infecções por Alphavirus , Alphavirus , Arbovírus , Vírus Chikungunya , Alphavirus/fisiologia , Infecções por Alphavirus/tratamento farmacológico , Infecções por Alphavirus/epidemiologia , Antivirais/farmacologia , Antivirais/uso terapêutico , Vírus Chikungunya/fisiologia , Desenvolvimento de Medicamentos , Humanos
7.
Methods Mol Biol ; 2409: 223-234, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34709645

RESUMO

Despite many advances on the understanding of dengue pathogenesis in the last decades, some questions remained to be clarified. The virulence of the pathogen and the host immune response are the main factors involved in pathogenesis of dengue infection. In addition, skin dendritic cells (DCs) are one of the primary targets for dengue virus infection. After infection, DCs process and present antigens to T cells and also secrete cytokines that shape the immune response. Although relevant for the development of antiviral immune response, an imbalance in the cytokine production by immune cells could lead to cytokine storm observed in severe dengue fever cases. Therefore, this chapter will describe the protocols for the in vitro differentiation of human monocytes into human monocyte-derived dendritic cells (mdDCs), followed by dengue virus infection, as well as the cytokine quantification produced by mdDCs using a cytometric bead array method.


Assuntos
Vírus da Dengue , Dengue , Citocinas , Células Dendríticas , Humanos , Monócitos , Replicação Viral
8.
Front Cell Infect Microbiol ; 11: 687633, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34660334

RESUMO

Cutaneous leishmaniasis is a zoonotic infectious disease broadly distributed worldwide, causing a range of diseases with clinical outcomes ranging from self-healing infections to chronic disfiguring disease. The effective immune response to this infection is yet to be more comprehensively understood and is fundamental for developing drugs and vaccines. Thus, we used experimental models of susceptibility (BALB/c) and partial resistance (C57BL/6) to Leishmania amazonensis infection to investigate the local profile of mediators involved in the development of cutaneous leishmaniasis. We found worse disease outcome in BALB/c mice than in C57BL/6 mice, with almost 15 times higher parasitic load, ulcerated lesion formation, and higher levels of IL-6 in infected paws. In contrast, C57BL/6 presented higher levels of IFN-γ and superoxide anion (•O2-) after 11 weeks of infection and no lesion ulcerations. A peak of local macrophages appeared after 24 h of infection in both of the studied mice strains, followed by another increase after 240 h, detected only in C57BL/6 mice. Regarding M1 and M2 macrophage phenotype markers [iNOS, MHC-II, CD206, and arginase-1 (Arg-1)], we found a pronounced increase in Arg-1 levels in BALB/c after 11 weeks of infection, whereas C57BL/6 showed an initial predomination of markers from both profiles, followed by an M2 predominance, coinciding with the second peak of macrophage infiltration, 240 h after the infection. Greater deposition of type III collagen and lesion resolution was also observed in C57BL/6 mice. The adoptive transfer of macrophages from C57BL/6 to infected BALB/c at the 11th week showed a reduction in both edema and the number of parasites at the lesion site, in addition to lower levels of Arg-1. Thus, C57BL/6 mice have a more effective response against L. amazonensis, based on a balance between inflammation and tissue repair, while BALB/c mice have an excessive Arg-1 production at late infection. The worst evolution seems to be influenced by recruitment of Arg-1 related macrophages, since the adoptive transfer of macrophages from C57BL/6 mice to BALB/c resulted in better outcomes, with lower levels of Arg-1.


Assuntos
Leishmania , Leishmaniose Cutânea , Animais , Arginase , Macrófagos , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL
9.
Front Microbiol ; 12: 710359, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34566915

RESUMO

Zika virus (ZIKV) is an arthropod-born virus that is mainly transmitted to humans by mosquitoes of the genus Aedes spp. Since its first isolation in 1947, only a few human cases had been described until large outbreaks occurred on Yap Island (2007), French Polynesia (2013), and Brazil (2015). Most ZIKV-infected individuals are asymptomatic or present with a self-limiting disease and nonspecific symptoms such as fever, myalgia, and headache. However, in French Polynesia and Brazil, ZIKV outbreaks led to the diagnosis of congenital malformations and microcephaly in newborns and Guillain-Barré syndrome (GBS) in adults. These new clinical presentations raised concern from public health authorities and highlighted the need for anti-Zika treatments and vaccines to control the neurological damage caused by the virus. Despite many efforts in the search for an effective treatment, neither vaccines nor antiviral drugs have become available to control ZIKV infection and/or replication. Flavonoids, a class of natural compounds that are well-known for possessing several biological properties, have shown activity against different viruses. Additionally, the use of flavonoids in some countries as food supplements indicates that these molecules are nontoxic to humans. Thus, here, we summarize knowledge on the use of flavonoids as a source of anti-ZIKV molecules and discuss the gaps and challenges in this area before these compounds can be considered for further preclinical and clinical trials.

10.
Acta Trop ; 220: 105938, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-33932363

RESUMO

Leydig cells play pivotal roles in eliciting male characteristics by producing testosterone and any damage to these cells can compromise male fertility Toxoplasma gondii (T. gondii) is an intracellular parasite capable to invade any nucleated cell, including cells from male reproductive system. Herein, we evaluated the capacity of RH strain of T. gondii to infect TM3 Leydig cells and the impact of this infection on testosterone and inflammatory mediators production. We first, by performing adherence, infection, and intracellular proliferation assays, we found a significant increase in the number of infected Leydig cells, peaking 48 h after the infection with T. gondii. Supernatants of TM3 infected cells exhibited, in a time-dependent manner, increased levels of testosterone as well as monocyte chemoattractant protein-1 (MCP-1) and interferon-γ (IFN-γ), which is correlated with the robust T. gondii infection. In conclusion, our study provides new insights regarding the harmful effects of T. gondii infection on male reproductive system.


Assuntos
Células Intersticiais do Testículo/parasitologia , Testosterona/biossíntese , Toxoplasmose/metabolismo , Animais , Quimiocina CCL2/biossíntese , Interferon gama/biossíntese , Masculino , Camundongos Endogâmicos BALB C , Fatores de Tempo , Toxoplasma
12.
J Infect ; 81(5): 766-775, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32987099

RESUMO

OBJECTIVES: Screening for genes differentially expressed in placental tissues, aiming to identify transcriptional signatures that may be involved in ZIKV congenital pathogenesis. METHODS: Transcriptome data from placental tissues of pregnant women naturally infected with Zika virus during the third trimester were compared to those from women who tested negative for Zika infection. The findings were validated using both a cell culture model and an immunohistochemistry/morphological analysis of naturally infected placental tissues. RESULTS: Transcriptome analysis revealed that Zika virus infection induces downregulation of insulin-like growth factor II (IGF2) gene, an essential factor for fetal development. The Caco-2 cell culture model that constitutively expresses IGF2 was used for the transcriptome validation. Asiatic and African Zika virus strains infection caused downregulated IGF2 gene expression in Caco-2 cells, whereas other flaviviruses, such as dengue serotype 1, West Nile and wild-type yellow fever viruses, had no effect on this gene expression. Immunohistochemical assays on decidual tissues corroborated our transcriptome analysis, showing that IGF2 is reduced in the decidua of Zika virus-infected women. CONCLUSIONS: Our results draw attention to IGF2 modulation in uterine tissues, and this finding is expected to support future studies on strategies to ameliorate the harmful effects of Zika virus infection during pregnancy.


Assuntos
Infecção por Zika virus , Zika virus , Brasil , Células CACO-2 , Regulação para Baixo , Feminino , Humanos , Fator de Crescimento Insulin-Like II/genética , Gravidez , Terceiro Trimestre da Gravidez , Zika virus/genética
13.
Chem Biol Interact ; 331: 109218, 2020 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-32916141

RESUMO

Flavonoids are natural products widely recognized for their plurality of applications such as antiviral, antiproliferative, antitumor activities and, antioxidant properties. The flavanone naringenin is presented in citrus fruits and has been studied to combat recurrent diseases that still lack effective treatment. Research groups have been investing efforts to the development of new, safe and active candidates to combat these agents or conditions and despite good results recently reported against the Zika virus (ZIKV) and tumor cells, the use of citrus naringenin is limited due to its low bioavailability. Structural exchanges through functionalization, for example, attaching lipophilic groups instead of hydroxyl groups, can further enhance biological properties. Here, the synthesis and characterization of regioselective naringenin mono-7-O-ethers and both mono and di-fatty acid esters, structurally lipophilic ones were demonstrated. Finally, in vitro studies of anti-ZIKV action and antiproliferative activities against melanoma (B16-F10) and breast carcinoma (4T1) cells showed the ether derivatives were actives, with IC50 ranging from 6.76, 18.5 and 22.6 µM to 28.53, 45.1 and 32.3 µM referring to ZIKV, B16-F10 and 4T1 cell lines, respectively. The lipophilic ethers present the ability to inhibit selectively ZIKV-replication in human cells and inhibitions. This class of modifications in flavonoid molecules could be further explore in the future development of specific anti-ZIKV compounds.


Assuntos
Antineoplásicos Fitogênicos/farmacologia , Antivirais/farmacologia , Citrus/química , Flavanonas/química , Zika virus/efeitos dos fármacos , Animais , Antineoplásicos Fitogênicos/química , Antivirais/química , Produtos Biológicos/química , Produtos Biológicos/farmacologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Citrus/metabolismo , Flavanonas/farmacologia , Humanos , Camundongos , Replicação Viral/efeitos dos fármacos , Zika virus/fisiologia
14.
Sci Rep ; 10(1): 2127, 2020 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-32034173

RESUMO

Social and epidemiological aspects of dengue were evaluated in an important metropolitan area in southern Brazil, from August 2012 to September 2014. Demographic, clinical, serological data were collected from patients with acute dengue symptoms treated at public health system units (HSUs). A systematic approach to analyze the spatial and temporal distribution of cases was developed, considering the temporal cross-correlation between dengue and weather, and the spatial correlation between dengue and income over the city's census tracts. From the 878 patients with suggestive symptoms, 249 were diagnosed as positive dengue infection (28%). Considering the most statistically significant census tracts, a negative correlation was found between mean income and dengue (r = -0.65; p = 0.02; 95% CI: -0.03 to -0.91). The occurrence of dengue followed a seasonal distribution, and it was found to be three and four months delayed in relation to precipitation and temperature, respectively. Unexpectedly, the occurrence of symptomatic patients without dengue infection followed the same seasonal distribution, however its spatial distribution did not correlate with income. Through this methodology, we have found evidence that suggests a relation between dengue and poverty, which enriches the debate in the literature and sheds light on an extremely relevant socioeconomic and public health issue.


Assuntos
Dengue/epidemiologia , Adulto , Brasil/epidemiologia , Clima , Estudos Epidemiológicos , Feminino , Humanos , Incidência , Masculino , Pobreza , Saúde Pública , Fatores Socioeconômicos , Tempo (Meteorologia)
15.
Exp Parasitol ; 211: 107853, 2020 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-32061628

RESUMO

The highlights of biogenic silver nanoparticles (AgNp-Bio) include low toxicity - depending on size and concentration - and efficient antiparasitic activity. Therefore, the objective of this study was to assess the action of the AgNp-Bio on HeLa cells in an infection with strain of RH Toxoplasma gondii. Firstly, we performed a cellular viability test and characterized the AgNp-Bio to proceed with the infection of HeLa cells with T. gondii to be treated using AgNp-Bio or conventional drugs. Subsequently, we determined the level of standard cytokines Th1/Th2 as well as the content of nitric oxide (NO) and reactive oxygen species (ROS). Results indicated a mean size of 69 nm in diameter for the AgNp-Bio and obtained a dose-dependent toxicity. In addition, the concentrations of 3 and 6 µM promoted a significant decrease in adherence, infection, and intracellular proliferation. We also found lower IL-8 and production of inflammatory mediators. Thus, the nanoparticles reduced the adherence, infection, and proliferation of ROS and NO, in addition to immunomodulating the IL-8. Therefore, our data proved relevant to introduce a promising therapeutic alternative to toxoplasmosis.

16.
Sci Rep ; 9(1): 16348, 2019 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-31705028

RESUMO

The Zika virus (ZIKV) is an arthropod-borne virus that belongs to the Flaviviridae family. The ZIKV infection is usually asymptomatic or is associated with mild clinical manifestations; however, increased numbers of cases of microcephaly and birth defects have been recently reported. To date, neither a vaccine nor an antiviral treatment has become available to control ZIKV replication. Among the natural compounds recognized for their medical properties, flavonoids, which can be found in fruits and vegetables, have been found to possess biological activity against a variety of viruses. Here, we demonstrate that the citrus flavanone naringenin (NAR) prevented ZIKV infection in human A549 cells in a concentration-dependent and ZIKV-lineage independent manner. NAR antiviral activity was also observed when primary human monocyte-derived dendritic cells were infected by ZIKV. NAR displayed its antiviral activity when the cells were treated after infection, suggesting that NAR acts on the viral replication or assembly of viral particles. Moreover, a molecular docking analysis suggests a potential interaction between NAR and the protease domain of the NS2B-NS3 protein of ZIKV which could explain the anti-ZIKV activity of NAR. Finally, the results support the potential of NAR as a suitable candidate molecule for developing anti-ZIKV treatments.


Assuntos
Antivirais/farmacologia , Citrus/química , Flavanonas/farmacologia , Replicação Viral , Infecção por Zika virus/tratamento farmacológico , Zika virus/efeitos dos fármacos , Células A549 , Antiulcerosos/química , Antiulcerosos/farmacologia , Antivirais/química , Sobrevivência Celular , Flavanonas/química , Humanos , Técnicas In Vitro , Simulação de Acoplamento Molecular , Montagem de Vírus , Infecção por Zika virus/virologia
17.
Mem Inst Oswaldo Cruz ; 114: e190150, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31432892

RESUMO

BACKGROUND: Zika virus (ZIKV) infections reported in recent epidemics have been linked to clinical complications that had never been associated with ZIKV before. Adaptive mutations could have contributed to the successful emergence of ZIKV as a global health threat to a nonimmune population. However, the causal relationships between the ZIKV genetic determinants, the pathogenesis and the rapid spread in Latin America and in the Caribbean remain widely unknown. OBJECTIVES: The aim of this study was to characterise three ZIKV isolates obtained from patient samples during the 2015/2016 Brazilian epidemics. METHODS: The ZIKV genomes of these strains were completely sequenced and in vitro infection kinetics experiments were carried out in cell lines and human primary cells. FINDINGS: Eight nonsynonymous substitutions throughout the viral genome of the three Brazilian isolates were identified. Infection kinetics experiments were carried out with mammalian cell lines A549, Huh7.5, Vero E6 and human monocyte-derived dendritic cells (mdDCs) and insect cells (Aag2, C6/36 and AP61) and suggest that some of these mutations might be associated with distinct viral fitness. The clinical isolates also presented differences in their infectivity rates when compared to the well-established ZIKV strains (MR766 and PE243), especially in their abilities to infect mammalian cells. MAIN CONCLUSIONS: Genomic analysis of three recent ZIKV isolates revealed some nonsynonymous substitutions, which could have an impact on the viral fitness in mammalian and insect cells.


Assuntos
Aedes/virologia , Replicação Viral , Infecção por Zika virus/virologia , Zika virus/genética , Animais , Brasil , Chlorocebus aethiops , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Filogenia , Células Vero , Carga Viral , Cultura de Vírus
18.
Mem Inst Oswaldo Cruz ; 114: e180432, 2019 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-30758394

RESUMO

BACKGROUND: The Zika virus (ZIKV) epidemics that affected South America in 2016 raised several research questions and prompted an increase in studies in the field. The transient and low viraemia observed in the course of ZIKV infection is a challenge for viral isolation from patient serum, which leads to many laboratories around the world sharing viral strains for their studies. C6/36 cells derived from Aedes albopictus larvae are commonly used for arbovirus isolation from clinical samples and for the preparation of viral stocks. OBJECTIVES: Here, we report the contamination of two widely used ZIKV strains by Brevidensovirus, here designated as mosquito densovirus (MDV). METHODS: Molecular and immunological techniques were used to analyse the MDV contamination of ZIKV stocks. Also, virus passages in mammalian cell line and infecting susceptible mice were used to MDV clearance from ZIKV stocks. FINDINGS: MDV contamination was confirmed by molecular and immunological techniques and likely originated from C6/36 cultures commonly used to grow viral stocks. We applied two protocols that successfully eliminated MDV contamination from ZIKV stocks, and these protocols can be widely applied in the field. As MDV does not infect vertebrate cells, we performed serial passages of contaminated stocks using a mammalian cell line and infecting susceptible mice prior to re-isolating ZIKV from the animals' blood serum. MDV elimination was confirmed with immunostaining, polymerase chain reaction (PCR), and analysis of the mosquitoes that were allowed to feed on the infected mice. MAIN CONCLUSIONS: Since the putative impact of viral contaminants in ZIKV strains generally used for research purposes is unknown, researchers working in the field must be aware of potential contaminants and test viral stocks to certify sample purity.


Assuntos
Culicidae/virologia , DNA Viral/genética , Densovirus/genética , Laboratórios , Zika virus , Animais , Bancos de Espécimes Biológicos , Linhagem Celular , Imunofluorescência , Humanos , Camundongos , Cultura de Vírus
19.
Mem. Inst. Oswaldo Cruz ; 114: e190150, 2019. tab, graf
Artigo em Inglês | LILACS | ID: biblio-1020077

RESUMO

BACKGROUND Zika virus (ZIKV) infections reported in recent epidemics have been linked to clinical complications that had never been associated with ZIKV before. Adaptive mutations could have contributed to the successful emergence of ZIKV as a global health threat to a nonimmune population. However, the causal relationships between the ZIKV genetic determinants, the pathogenesis and the rapid spread in Latin America and in the Caribbean remain widely unknown. OBJECTIVES The aim of this study was to characterise three ZIKV isolates obtained from patient samples during the 2015/2016 Brazilian epidemics. METHODS The ZIKV genomes of these strains were completely sequenced and in vitro infection kinetics experiments were carried out in cell lines and human primary cells. FINDINGS Eight nonsynonymous substitutions throughout the viral genome of the three Brazilian isolates were identified. Infection kinetics experiments were carried out with mammalian cell lines A549, Huh7.5, Vero E6 and human monocyte-derived dendritic cells (mdDCs) and insect cells (Aag2, C6/36 and AP61) and suggest that some of these mutations might be associated with distinct viral fitness. The clinical isolates also presented differences in their infectivity rates when compared to the well-established ZIKV strains (MR766 and PE243), especially in their abilities to infect mammalian cells. MAIN CONCLUSIONS Genomic analysis of three recent ZIKV isolates revealed some nonsynonymous substitutions, which could have an impact on the viral fitness in mammalian and insect cells.


Assuntos
Humanos , Animais , Aedes/virologia , Zika virus/genética , Infecção por Zika virus/virologia , Camundongos Endogâmicos BALB C , Filogenia , Cultura de Vírus , Replicação Viral , Células Vero , Brasil , Chlorocebus aethiops , Carga Viral
20.
Mem. Inst. Oswaldo Cruz ; 114: e180432, 2019. tab, graf
Artigo em Inglês | LILACS | ID: biblio-984761

RESUMO

BACKGROUND The Zika virus (ZIKV) epidemics that affected South America in 2016 raised several research questions and prompted an increase in studies in the field. The transient and low viraemia observed in the course of ZIKV infection is a challenge for viral isolation from patient serum, which leads to many laboratories around the world sharing viral strains for their studies. C6/36 cells derived from Aedes albopictus larvae are commonly used for arbovirus isolation from clinical samples and for the preparation of viral stocks. OBJECTIVES Here, we report the contamination of two widely used ZIKV strains by Brevidensovirus, here designated as mosquito densovirus (MDV). METHODS Molecular and immunological techniques were used to analyse the MDV contamination of ZIKV stocks. Also, virus passages in mammalian cell line and infecting susceptible mice were used to MDV clearance from ZIKV stocks. FINDINGS MDV contamination was confirmed by molecular and immunological techniques and likely originated from C6/36 cultures commonly used to grow viral stocks. We applied two protocols that successfully eliminated MDV contamination from ZIKV stocks, and these protocols can be widely applied in the field. As MDV does not infect vertebrate cells, we performed serial passages of contaminated stocks using a mammalian cell line and infecting susceptible mice prior to re-isolating ZIKV from the animals' blood serum. MDV elimination was confirmed with immunostaining, polymerase chain reaction (PCR), and analysis of the mosquitoes that were allowed to feed on the infected mice. MAIN CONCLUSIONS Since the putative impact of viral contaminants in ZIKV strains generally used for research purposes is unknown, researchers working in the field must be aware of potential contaminants and test viral stocks to certify sample purity.


Assuntos
Humanos , Animais , Cultura de Vírus , Bancos de Espécimes Biológicos , Zika virus , DNA Viral , Imunofluorescência , Densovirus/genética , Camundongos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...